Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Talanta ; 235: 122800, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1356463

ABSTRACT

The COVID-19 pandemic brings unprecedented crisis for public health and economics in the world. Detecting specific antibodies to SARS-CoV-2 is a powerful supplement for the diagnosis of COVID-19 and is important for epidemiological studies and vaccine validations. Herein, a rapid and quantitative detection method of anti-SARS-CoV-2 IgG antibody was built based on the optofluidic point-of-care testing fluorescence biosensor. Without complicated steps needed, the portable system is suitable for on-site sensitive determination of anti-SARS-CoV-2 IgG antibody in serum. Under the optimal conditions, the whole detection procedure is about 25 min with a detection limit of 12.5 ng/mL that can well meet the diagnostic requirements. The method was not obviously affected by IgM and serum matrix and demonstrated to have good stability and reliability in real sample analysis. Compared to ELISA test results, the proposed method exhibits several advantages including wider measurement range and easier operation. The method provides a universal platform for rapid and quantitative analysis of other related biomarkers, which is of significance for the prevention and control of COVID-19 pandemic.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Pandemics , Point-of-Care Testing , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity
2.
Biosens Bioelectron ; 190: 113418, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1260669

ABSTRACT

The continuing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has spread globally and its reliable diagnosis is one of the foremost priorities for protecting public health. Herein a rapid (<1 h), easy-to-implement, and accurate CRISPR-based evanescent wave fluorescence biosensing platform for detection of SARS-CoV-2 is reported. The collateral effect of Cas13a is combined with a universal autonomous enzyme-free hybridization chain reaction (HCR) by designing a cleavage hairpin reporter, which is cleaved upon target recognition, and hence releasing the initiator sequence to trigger the downstream HCR circuits. Detection of HCR assemblies is accomplished by first adsorbing to the desthiobiotin-modified optical fiber, followed by fluorescence emission induced by an evanescent field. Three Cas13a crRNAs targeting the genes of S, N and Orf1ab of SARS-CoV-2 are programmed to specifically target SARS-CoV-2 or broadly detect related coronavirus strains, such as MERS-CoV and SARS-CoV. The HCR amplification coupled Cas13a-based biosensing platform is capable of rapid detection of SARS-CoV-2 with attomolar sensitivity. This method is further validated by adding target RNA of SARS-CoV-2 in negative oropharyngeal swabs. The good discrimination capability of this technique demonstrates its promising potential for point-of-care diagnosis of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL